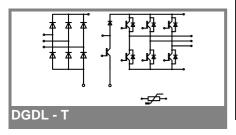


3-phase bridge rectifier + brake chopper + 3-phase bridge inverter **SK 100 DGDL 066 T**

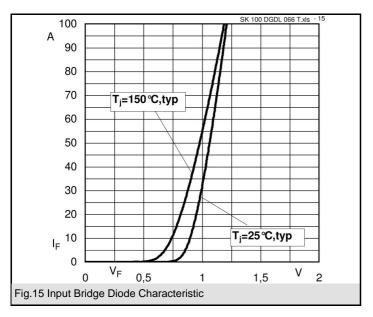
Target Data

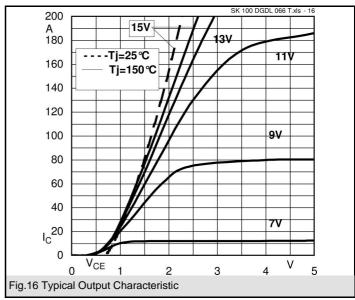
Features

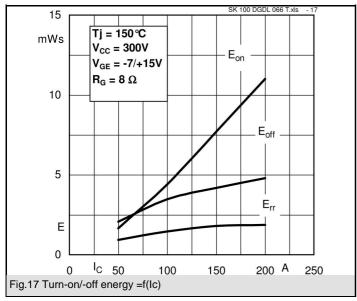

- One screw mounting module
- Fully compatible with SEMITOP®1,2,3
- Improved thermal performances by aluminium oxide substrate
- Trench IGBT technology
- CAL technology free-wheeling diode
- Integrated NTC temperatur sensor

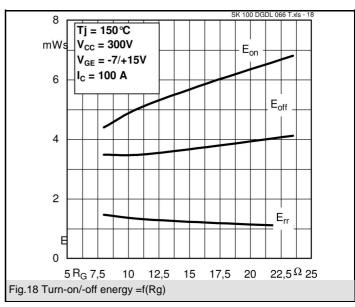
Typical Applications

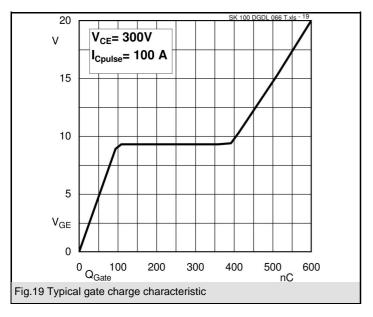
- Inverter up to 12,5 kVA
- Typical motor power 5,5 kW

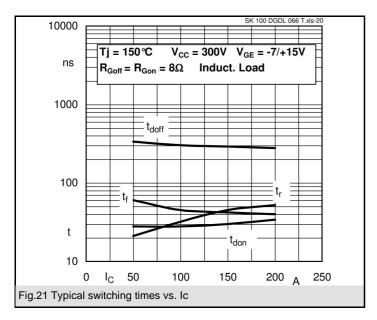

Remarks

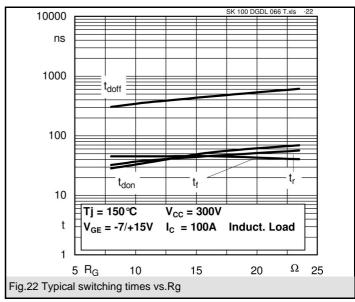

• V_{CE,sat} , V_F = chip level value

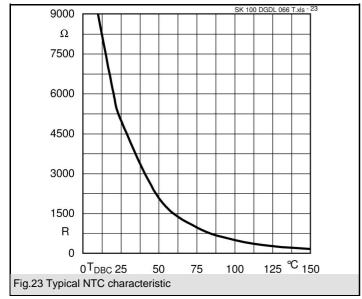


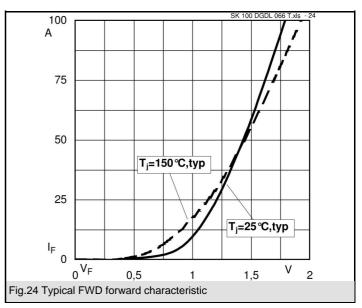

Absolute Maximum Ratings T _s = 25°C, unless otherwise specified							
Symbol	Conditions	Values	Units				
IGBT - Inverter, Chopper							
V_{CES}		600	V				
I _C	$T_s = 25 (70) ^{\circ}\text{C}, T_j = 175 ^{\circ}\text{C}$	106 (85)	Α				
I _C	$T_s = 25 (70) ^{\circ}\text{C}, T_j = 150 ^{\circ}\text{C}$	96 (73)	Α				
I _{CRM}	$I_{CRM} = 2 \times I_{Cnom}, t_p = 1 \text{ ms}$	200	Α				
V_{GES}		± 20	V				
T_{j}		-40 + 175	°C				
Diode - Inverter, Chopper							
I _F	$T_s = 25 (70) ^{\circ}C, T_j = 150 ^{\circ}C$	91 (67)	Α				
I _F	$T_s = 25 (70) ^{\circ}\text{C}, T_j = 175 ^{\circ}\text{C}$	99 (79)	Α				
I _{FRM}	$I_{FRM} = 2xI_{Fnom}, t_p = 1 \text{ ms}$	128	Α				
Diode - Rectifier							
V_{RRM}		800	V				
I _F	T _s = 70 °C	61	Α				
I _{FSM}	$t_p = 10 \text{ ms, sin } 180 ^{\circ}, T_j = 25 ^{\circ}\text{C}$	700	Α				
i²t	$t_p = 10 \text{ ms, sin } 180 ^{\circ}, T_j = 25 ^{\circ}\text{C}$	2400	A²s				
T _j		-40 + 175	°C				
T _{sol}	Terminals, 10 s	260	°C				
T _{stg}		-40 + 125	°C				
V _{isol}	AC, 1 min.	2500	V				

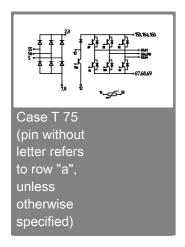

Character	ristics	T _s = 25°C, unless otherwise specified						
Symbol	Conditions	min.	typ.	max.	Units			
IGBT - Inverter, Chopper								
V _{CE(sat)}	$I_{Cnom} = 100 \text{ A}, T_{i} = 25 (150) ^{\circ}\text{C}$	1,05	1,45 (1,7)	1,9 (2,15)	V			
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 1.6$ mA	5	5,8	6,5	V			
V _{CE(TO)}	$T_j = 25 (150) ^{\circ}C$		0,9 (0,7)		V			
r_{CE}	$T_j = 25 (150) ^{\circ}C$		5,5 (10)	9 (13,5)	mΩ			
C _{ies}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		6,16		nF			
C _{oes}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		0,38		nF			
C _{res}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		0,18		nF			
$R_{th(j-s)}$	per IGBT		0,65		K/W			
t _{d(on)}	under following conditions		28		ns			
t _r	$V_{CC} = 300 \text{ V}, V_{GE} = -7 / + 15 \text{ V}$		32		ns			
t _{d(off)}	$I_{Cnom} = 100 \text{ A}, T_j = 150 \text{ °C}$		301		ns			
t _f	$R_{Gon} = R_{Goff} = 8 \Omega$		45		ns			
$E_{on} (E_{off})$	inductive load		4,4 (3,5)		mJ			
Diode - Inverter, Chopper								
$V_F = V_{EC}$	I _F = 100 A, T _j = 25 (150) °C		1,25 (1,2)		V			
$V_{(TO)}$	$T_j = 25 (150)^{\circ} C$		0,95 (0,85)		V			
r _T	$T_j = 25 (150) ^{\circ}C$		3 (3,5)		mΩ			
$R_{th(j-s)}$	per diode		0,8		K/W			
I _{RRM}	under following conditions		40		Α			
Q_{rr}	$I_{Fnom} = 100 \text{ A}, V_{R} = 300 \text{ V}$		5		μC			
E _{rr}	$V_{GE} = 0 \text{ V}, T_j = 150^{\circ}\text{C}$		1,45		mJ			
	$di_F/dt = 2438 \text{ A/}\mu\text{s}$							
Diode - Rectifier								
V_{F}	I _{Fnom} = 35 A, T _j = 25 °C		1,1		V			
$V_{(TO)}$	$T_{j} = 150 ^{\circ}\text{C}$		0,8		V			
r _T	$T_{j} = 150 ^{\circ}\text{C}$		11		mΩ			
$R_{th(j-s)}$	per diode		0,9		K/W			
Temperature Sensor								
R _{ts}	5 %, T _r = 25 (100) °C		5000(493)		Ω			
Mechanical Data								
w			60		g			
M_s	Mounting torque	2,5		2,75	Nm			

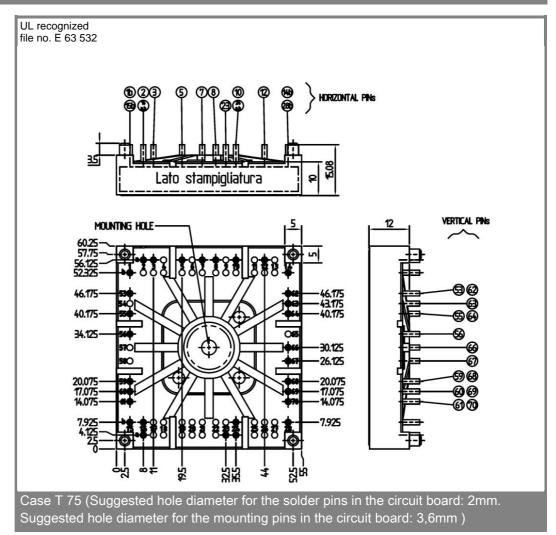












3 12-05-2008 DIL © by SEMIKRON

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.